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SUMMARY

An analytical and experimental investigation was conducted to determine the

coupled dynamic response of a liquid-tank combination undergoing free and forced

planar oscillations. The experimental portion of the investigation was conducted

by using a partially filled cylindrical tank fitted with baffles and suspended to

allow freedom in pitch and translation. An excitation force was provided by a

small air jet coupled to the base of the tank. Experimental data are presented

to show the effects of liquid damping, excitation force, and coupled natural fre-

quency on the stability of the system. Analytical results, obtained by use of

the pendulum analogy to simulate the dynamic characteristics of the liquid, are

also presented. Comparisons of the analytical results with those obtained exper-

imentally indicate that the pendulum analogy provides a very effective method for

the determination of coupled natural frequencies of partially filled tanks under-

going planar translatory and pitching oscillations.

The data further indicate that the pendulum analogy yields valid modal

damping for systems in which the tank experiences purely translatory motions if

the pendulum is damped so that its decrement is equal to the decrement of liquid

amplitudes in an identical static tank fitted with the same baffle configuration.

The pendulum analogy, incorporating these damping values, will not, however,

yield valid modal damping for the s_ne system undergoing pitching oscillations.

This apparent discrepancy may be attributed to a basic difference in the behavior

of the liquid, and hence, a difference in the liquid damping, which was found to

exist between translating and pitching systems. Limited data on the damping of a

pitching tank containing a liquid are presented to illustrate this difference.

*The information presented herein is based in part upon a thesis entitled

"An Analytical and Experimental Investigation of the Stability of an Analogous

Liquid Propellant Space Vehicle" submitted by David G. Stephens in partial ful-

fillment of the requirements for the degree of Master of Science in Engineering

Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia, May 1963.



INTRODUCTION

During the past few years, considerable research has been conducted on the
dynamics associated with the sloshing of liquids in missile and space vehicles.
The primary objectives of this research were to define the basic phenomenaasso-
ciated with the liquid motion and to determine the effects of this motion on the
dynamic stability of liquid-carrying vehicles. Guidelines for muchof the work
were set forth by problems encountered in early vehicles. Observations of vehicle
flights were sufficient to define the elemental sources of sloshing instabilities
and to suggest areas where immediate basic research was required.

It was observed that in any rocket flight, the vehicle body is subjected to
translatory and pitching perturbations from such external sources as guidance and
control inputs and horizontal-wind shears. Vehicle body motions of this type
result in disturbances of the contained liquid. If the perturbations occur at a
frequency near that of the fundamental antisymmetric liquid mode, the liquid is
forced to oscillate at amplitudes sufficiently large to produce severe destabi-
lizing forces and momentson the vehicle (ref. 1). The severity of this destabi-
lizing influence is cited in reference 2, where the failure of large boost vehi-
cles has been attributed to fuel sloshing. The relative magnitude of the liquid
oscillation is highly dependent upon and may therefore be controlled by the
damping applied to the liquid by baffles placed in the tank. These ingredients of
the sloshing phenomena3 that is, liquid natural frequencies and damping, have been
the subject of numerous investigations.

Natural frequencies of liquids contained in tanks having a wide variety of
shapes and sizes have been determined both analytically and experimentally
(refs. l, 3, and 4). By utilizing this information, sloshing instabilities have
been partially averted by designing the guidance and control response frequency
away from the lower liquid natural frequencies. Baffle dampinghas also been the
subject of considerable research; references 53 6, and 7 give information on the
relative effectiveness of various types of baffles including annular rings,
floating cans, cruciforms, bladders, and conic sections. Somework has also been
done on the damping of liquid oscillations in draining tanks containing no baffles
(ref. 8). The combined results of these studies define the basic phenomenaasso-
ciated with the sloshing motion. The information derived from these studies is
not, however, sufficient in itself to determine the effects of the contained
liquid on the dynamic stability of liquid-carrying vehicles. For the examination
of stability, the effects of fuel sloshing must be included mathematically in the
equations of motion of the vehicle.

The writing of mathematical expressions which describe the liquid motion for
inclusion in the vehicle equations of motion presents a difficult problem and has
hindered comprehensive stability analyses. The difficulty arises from the com-
plexity of the liquid behavior, the boundary conditions imposedby the vehic_le
tanks, and the presence of dissipative forces resulting from external damping
devices. At the present time, the most promising approach to the problem of
including the liquid characteristics in the stability analysis of space vehicles
appears to be the simulation of the liquid by meansof an analogous mechanical
system. Efforts have been devoted to the development of an analog which closely
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simulates the hydrodynamic frequencies, forces, and moments. Reference 9 presents
an extensive bibliography on fuel-sloshing research which includes a great deal of
this work.

Oneof the more comprehensive treatments of analogous systems is presented
in reference i0 which is preceded by the work of references ii, 12, and 13. The
hydrodynamic equations for the transverse forces and momentsabout the base of
a partially filled cylindrical tank are presented for planar motions of the cylin-
der, and a mechanical analog consisting of a fixed massplus a set of pendulums
is then developed which theoretically duplicates the linearized hydrodynamic
forces and momentsimposedby the undampedliquid on the tank. In the analogous
system, the liquid in motion in the region of the free surface is represented by
one or more pendulumsdepending on the numberof liquid modesbeing considered.
The remainder of the liquid is assumedto be at rest with respect to the tank and
is represented by a fixed mass.

The duplication of the hydrodynamic forces and momentsby the analogous
system is assured by the proper choice of several physical constants. The values
of these constants, expressed in terms of the dimensions of the vehicle, are
obtained by a term-by-term comparison of the linearized hydrodynamic equations
with the equations of motion of the pendulum analogy.

Several other investigators have suggested analogies which replace the pen-
dulums with spring-mass systems. Probably the most extensive of these works is
that of reference 14. To comparethe two analogs, reference 15 presents a corre-
lation of the experimental measurementand analytical prediction of the frequen-
cies for free oscillations of a cylindrical tank partially filled with mercury.
The liquid is represented analytically by a single pendulumand a fixed mass in
one case_ and by a spring-mass and fixed-mass combination in the other case. It
was concluded in the reported application that the analytical models are identical

for small displacements and that they provide excellent simulation of the stiff-

ness and inertial terms for undamped liquid oscillations. The pendulum analogy

appears to be the bette_ approach in some applications, such as that of a varying

acceleration field, because the pendulum frequencies exhibit the same dependence

on the longitudinal accelerations of the tank as do the liquid natural frequencies.

The mechanical analogies thus far discussed have been derived for the case

where no external damping is applied to the liquid. The incorporation of damping

into these analogies_ for use in predicting the dynamic response of systems in

which baffles have been installed to provide damping of the liquid, has been

limited for two reasons. First, a method for including the damping provided by a

baffle is questionable, and secondly, damping values for a given baffle have only

recently become available. (See ref. 16.)

Reference 16 presents the results of an experimental program conducted to

determine the effects of baffle configuration, size, and location on the damping

of the fundamental antisymmetric mode of a liquid oscillating in a static right-

circular-cylindrical tank. Emphasis is placed on the damping (in terms of a log-

arithmic decrement) of the wave amplitude provided by annular ring baffles at

various locations with respect to the free surface. Since these data were pre-

sented in terms of a logarithmic decrement, an equivalent damping coefficient can
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be extrapolated from them which provides a similar decrement for the pendulum

motion. Although these damping coefficients apply only to the first antisymmetric

liquid mode, it has been shown experimentally (ref. 17) that this mode is of prime

importance because of the ease with which large-amplitude liquid motions can be

induced and because of the large forces which the liquid pressures impart to the

tank wall. It therefore appears that, as a first approximation, the liquid can

be treated as a single-degree-of-freedom system and simulated bj a single, damped

pendulum plus a fixed mass.

It is the purpose of this paper to present the results of a study of the

coupled dynamic response of a partially filled cylindrical tank, free to undergo

either simultaneous or separate planar pitching and translational oscillations

under the influence of a variable self-excitation force. The experimental portion

of the investigation was conducted with a laboratory model, while the analytical

study was conducted by utilizing an analogous system wherein a damped pendulum is

used to simulate the dynamic effects of the liquid. The analytical and experi-

mental results are compared for the purpose of defining the regions of applica-

bility and the limitations of this pendulum analogy for the simulation of the

damped liquid.

SYMBOLS

AI, A2, A _

a, b

C

c_, ce

c 7

D

d

F

f

g

h

hl

I

dimensionless parameters defined in equations (A7), (AS), and (A9)

real and imaginary parts of the complex number a + ib

arbitrary constants in general equation of motion (eq. (i0))

viscous damping coefficient, ib-sec/ft

viscous damping coefficient, ib-ft-sec/rad

damping dissipation function, ib-ft/sec

depth of baffle below free surface, ft

thrust of engine, lb

circular frequency, cps

acceleration due to gravity, ft/sec 2

distance from tank bottom to quiescent liquid surface, ft

distance from tank bottom to tank pivot point, ft

mass moment of inertia about center of gravity, lb-ft-sec 2

4



i

K

KI

M

m

Q

q

r

T

t

V

ZXW

X, Y

_, _, 7, 9

(_13

Sub script s :

a

c

cr

imaginary unit =

spring constant, ib/ft

h
tank parameter for fundamental antisymmetric liquid mode = _i

length, ft

total liquid mass, ib-sec2/ft

mass, ib-sec2/ft

generalized force

generalized coordinate

initial amplitude of q

tank radius, ft

kinetic energy, ft-lb

time, sec

potential energy, ft-lb

virtual work, ft-lb

Cartesian coordinates

angular displacements, radians (See fig. 4.)

incremental change

logarithmic decrement

root of characteristic equation

first zero of the first derivative of the Bessel function of the

first order and first kind

rotational velocity, radians/sec

any generalized coordinate

jet damper

critical damping



example, _ = dX.

cg center of gravity

e jet

g jet pivotal axis

h pendulum pivot point

k jet spring

n number of elements

o fixed mass

p pendulum

s support platform

t tank

coordinate

coordinate

7 coordinate 7

A dot over a symbol indicates differentiation with respect to time.

dt

For

APPARATUS AND INSTRUMENTATION

The apparatus used in the experimental portion of the investigation is shown

photographically in figure 1 and is described schematically in figure 2. It con-

sisted of a 12-inch inside-diameter cylindrical tank mounted to be free to trans-

late and pitch in the same plane. An air jet forcing mechanism, free to rotate

about an axis normal to the pitch plane_ was mounted to the bottom of the cylin-

der. Additional degrees of freedom were provided by the antisymmetric modes of

the liquid contained within the tank. For the purposes of this investigation,

only the fundamental antisymmetric liquid mode was considered. Thus the complete

system contained four degrees of freedom_ namely, tank translation, tank pitching,

air jet rotation, and liquid motion. The system was designed so that one or more

of these degrees of freedom could be eliminated by the use of simple constraints.

An annular support platform (figs. l(b) and 2) served as the basic mounting

device for the system. The cylindrical tank was concentrically located within

this platform and supported by two pivot points attached to the cylinder above the

center of gravity of the filled configuration. These pivots constituted the tank

pitch axis. The platform was suspended in parallelogram fashion from overhead
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supports by means of four wires to allow freedom of tank translation. The trans-

lational frequency of the assembled system was governed by the length of the sus-

pension wires and by the stiffness of a spring shown schematically in figure 2.

This spring consisted of a rod, placed perpendicular to the plane of system

motion_ having one end pinned to the support platform and the other end clamped

to a rigid wall. Thus, the coupled natural frequencies of the system could be

changed simply by replacing a given horizontal rod by another rod having a differ-

ent stiffness. To obtain a suitable range of coupled frequencies, two different

translational springs were employed, one provided coupled frequencies slightly

above and the other slightly below the uncoupled liquid natural frequency. Two

small support rods, mounted parallel to and in a horizontal plane with the spring

rod, constrained the translatory oscillations to the plane of the pitching motions.

The air jet attached to the base of the tank (fig. l(c)) was used to simulate

a gimbaled rocket engine and to provide the desired excitation force. The engine

analog was essentially a cylinder having four in-line-nozzle exits along the wall.

A shaft integral with and extending outward along the cylinder axis was fitted

into bearing supports attached to the base of the propellant tank. Thus, the jet

was free to rotate with respect to the tank and in the plane of the tank motion.

Air was supplied to the engine through three lightweight vinyl tubes leading from

an air storage tank which was maintained at a preselected pressure by control

valves at the inlet. A small rod, having a sphere attached to one end, extended

downward from the jet shaft into an oil bath. The motion of the sphere through

the oil provided external damping of the jet rotation. Therefore, when the tank

was given a small displacement_ the external damping would cause the thrust vector

of the jet to lag this displacement. This lag in turn resulted in destabilizing

forces and moments which tended to increase the displacement.

A linear-variable-differential transformer was attached to the support plat-

form to sense the translatory motions of the system. The pitching oscillations

were sensed by a strain-gage beam at the pivotal axis of the tank. The output of

a selected transducer was amplified and fed into a Dampometer which measured the

rate of decay or rate of divergence of the system for various values of liquid

damping, thrust, and translatory spring stiffness. Thrust was sensed by a cali-

brated pressure transducer located in the air jet chamber and connected to a mer-

cury manometer.

Throughout this investigation, water was used as the liquid, and ring baffles

with clearance were used to provide the liquid damping. The baffles consisted of

i/8-inch-thick annular Plexiglas rings having a i/8-inch radial clearance with

respect to the tank wall as shown in figure 2. Baffles with i/2-inch and 3/4-inch

widths could be interchanged to vary the amount of damping.

TEST PROCEDURE

In an effort to make a more complete and systematic investigation and to iso-

late effects of individual parameters, selected subcases were examined before the

complete configuration was studied. These subcases are shown schematically in

figure 3_ and for the purposes of discussion are denoted: two degrees of freedom
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(tank translation and liquid motion); three degrees of freedom (tank translation,

liquid motion, and jet rotation), with and without thrust; and four degrees of

freedom (tank translation, liquid motion, air jet rotation, and tank pitch). Both

the experimental and analytical phases of the study were conducted in this order.

This study of the successively more complex systems provided a step-by-step eval-

uation of the effects of various parameters on the system motion. In all tests,

the primary variables were the liquid damping, the magnitude of the applied thrust

(where applicable)_ and the system natural frequencies as governed by the spring
stiffness.

Basic test procedures were essentially the same for each of the cases exam-

ined. In general, the system was manually excited at a frequency closely corre-

sponding to that of a natural mode of oscillation and then released. In all

cases, the system amplitude was great enough to permit random responses generated

during the excitation to decay before the test data were taken. When a prese-

lected initial liquid amplitude was reached, a signal from the transducer ener-

gized the Dampometer which measured damping over a number of cycles of the ensuing

oscillation. The frequency was also measured by timing a number of the oscilla-

tions with a stop watch. Although the system had two or more natural frequencies

in all cases, only those modes were examined in which the system behaved essen-

tially as one having a single degree of freedom upon removal of the excitation.

This technique of isolating and examining the characteristics of a single mode was

unique for tb_is system and, of course, is not always possible in viewing systems

having several degrees of freedom. It was possible in this case only because of

the relatively low degree of dynamic coupling between the system elements.

The amount of liquid damping was determined from reference 16 by the size

and position of the baffle with respect to the liquid surface and by the liquid

amplitude at the time a test point was taken. The thrust level was also prese-

lected by choosing the proper stagnation pressure of air being supplied to the

engine. For each test point_ constant values of thrust and liquid damping were

maintained. The liquid amplitude limits remained fixed for each case under inves-

tigation and were of the same order of magnitude as those used in obtaining the
damping factors presented in reference 16.

ANALYSI S

Derivation of the Equations of Motion

The mathematical model of the complete system (fig. 2) is shown in figure 4.

The liquid is represented by a pendulum and a fixed mass mo. The differential

equations of motion for this system were developed by use of the Lagrange energy-

equation approach (ref. 18). This approach consists of writing the kinetic and

potential energiesj the damping dissipation function, and the generalized forces

in terms of the generalized coordinates of the system. The operations indicated

by Lagrange's equations are then performed on the energy expressions. For the

present study the generalized coordinates selected were the angular displacements

associated with the motions of the tank, liquid (pendulum), and air jet and are

designated by _, _, 7, and 8 in the mathematical model, figure 4.



The following assumptions are madein the analysis: (i) all angular dis-
placements are small, for example, sin _ = _} (2) liquid oscillations are limited
to the fundamental antiskvametric liquid mode; and (9) all dissipative forces are
the result of viscous d_mping.

Kinetic energy.- The kinetic energy T of the complete system shown in fig-

ure 4 is defined as the su_nation of the following energy components:

T s - kinetic energy of support platform, T t - kinetic energy of tank,

Tp - kinetic energy of pendulum_ T o - kinetic energy of fixed mass, and

T e - kinetic energy of jet assembly.

The kinetic energy of each of the various elements in terms of the general-

ized coordinates is as follows:

_ ° \2
TS : 1 ms(Zs_ ) (la)

2

I _2 1 mt(ls2_2 2ZsZt_ + Zt2_2)Tt = _ Itcg + _ +
(_)

TO i _2 + i mo(Zs2_2 + 2ZsZo_ + Zo2_ 2)= _ I°cg 7 (lc)

1 I_s2_,2mp 2Z sZhC_13"" 2Z sZp&(_ 2]+ + _h2_2+ 2_p_h_(_ + _) + + _) + _p2(_ + _)Tp

(id)

Te 1 (# + _)2 + 1 [_s2&2 _g2_2= [ lecg # me + 27,sT,g$,_ + 2ZgZe_(_+ @) +

+ 2ZsZeA(_+ @)+ 7,e2(1_+ _)2] (le)

Potential energy.- The total potential energy V of the system consists of

the elastic strain energy of the translatory spring and the potential energy of

the system resulting from vertical displacements with respect to the equilibrium

position. Thus_ the total potential energy of the system is:
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_2 132
V : g(m s + mt + mo + mp + me)Z s V + g(mtzt + m°Z° + mP Zh + meZg)-_

+ m_Zp (_ +2_,)2 + m_Ze (6 +2°)2 + _l K_,(Zs_)2

+ i Ke[ts_ + + Zk(_ + o)] 2_g_ (2)

Dissipation function.- Dissipative forces result from the relative motion

between the liquid and the baffles installed to suppress the liquid oscillations.

These forces are assumed to be proportional to the relative velocity and are thus

treated as dissipative forces resulting from viscous damping. Damping is also

present in the translatory spring and the drag mechanism of the air jet. The

energy dissipated due to viscous damping is expressed in the form of a dissipation
function

i 2 i -2 i LFzs2& 2 "" Zg2D = _ c_(Zsa) + - c_7 + - Ce + 2ZsZg_ + 2ZsZo_(B+ 61 + B22 2

+ 2ZgZc_( _ + @) + ?,c2(_ + _)2] (3)

Generalized forces.- The generalized force Qa associated with each gener-

alized coordinate qa is defined as

__a(Aw) (4)

where AW is the virtual work, given as the product of the applied force and the

virtual displacement Aqa of the system at the point at which the force is

applied. As a result of the thrust F_ the virtual work is:

_W = -F(@ + # - _)%s£_ - F@Zg_ (_)

Therefore, the generalized forces are

%=-FZs(e + 13-_) (6)

and

Q_ = -FZg@ (7)
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Lagrange's equations.- Having derived the system energies, dissipation func-

tion_ and generalized forces, Lagrange's equations

ddt_T _ _ ST___+ _V + _D - Qa (8)

are then used to obtain the differential equations of motion for the system where

qa denotes one of the generalized coordinates _, 9, 72 or 8. Then, consis-

tent with the procedures of stability analyses of such systems, the resultant

differential equations of motion are assumed to have solutions of the form

_a eht. Upon substituting these assumed solutions into the differentialqa equa-

tions of motion,

ih2[msZs 2 + mt_s 2 + mo2s 2

+ mpZs 2 + %_s 2]

+ X[c_Zsz + CeZs_

@ g[ms_ s + mtZ s + mp_ s + moZ s

X.2[mtT.s_ t + mo_sT.o + mpT,sT.h

+ %_sZ!o -+ meZE_g + _ZsZe]

+ 7_[CeZsZg + CeZs_c]

+ {oo,o,o]
+'g,o4

the following matrix resuit s:

%2[mtZsZ t + mo_sl o + mpZs_ h

+ _s_p + meZslg + me_s_e]

+ 7k[CeZs_g+ ee_sZc]

+ like _sZg + Ke _s Zk+ FZs]

A2 ImpZs Zp]

h2[l t + I o + I e + mtZt 2 + mo_o 2

+ _zp 2 + 2mpLpL h + _zh2

+ meZe2 + 2meZeZg + meZg2 ]

+ :_[%zg2+ 2OeZsZc+ %Zo2]

+ g[mtI t + _l o + _2g + mpZp

+ ._pZ h + meZ e + _g Ik2

+ 2 _ Zk_g+ _ Zg2]

_2[mpZp_h + mpZp 2]

+

+ g[meZ e + -_g _gTk

+<

h2[I e + meZgL e + m_e_

+ kit e _gZc + Cede 2]

+ g[meZe + g_ IgZ k

+

!,

i, (n)
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It should be noted that the equations of motion of the system under consideration

are homogeneous since the generalized forces are functions only of the generalized
coordinates and thus appear on the left side of the matrix.

Solutions of the Equations of Motion

The system of homogeneous equations will have a nontrivial solution if and

only if the determinant of the characteristic matrix vanishes. An expansion of

this determinant will yield an eighth order polynomial in terms of h, the solu-

tion of which yields the characteristic roots to define the stability of the

coupled system. The determination of the numerical values of the coefficients in

the determinant is presented in the appendix.

The expansion of the determinant and the solution of the resultant polyno-

mial were accomplished by the use of an IBM 704 electronic data processing

machine. In all cases, the roots were in the form of complex conjugate pairs

hn = an ± ibn, where the number of pairs n was of course equal to the number of

degrees of freedom being considered. The resultant stability of the coupled

system is readily apparent from an examination of these roots. If the real parts

of all of the complex pairs are negative, the system is stable; however_ if one

or more of the real parts is positive, an unstable condition is indicated.

The equation of motion for each generalized coordinate has a final form_

hit h2t Cnehn tqa = Cle + C2e + • • • + (lO)

Although all of the roots are included in this equation, in many cases one root

becomes predominant after a short period of time. For the cases considered in

this investigation, for example_ one or more of the roots usually had relatively

large negative real parts. Thus, after a short period of time, these roots had a

negligible effect on the resultant motion. In such a case the system will oscil-

late in essentially a pure mode at a frequency given by the imaginary part b of

the remaining characteristic root. The logarithmic decrement of the resultant

motion is given by 5 = -2______a.
b

PRESENTATION AND DISCUSSION OF RESULTS

General

In order to examine the applicability of the pendulum analogy for the simu-

lation of the liquid characteristics under conditions similar to those encountered

by an actual space vehicle, a model having four degrees of freedom was experimen-

tally and analytically examined. The primary degrees of freedom were the planar

translatory and pitching motions of the cylindrical tank and the oscillation of

the contained liquid. The rotation of the air jet about its axis constituted the
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fourth degree of freedom. Since the massof this element was relatively small,

the addition of the air jet_ exclusive of thrust, had an almost negligible effect

on the dynamic response of the system. It did_ however, provide a source of exci-

tation for the purpose of examining the degree of simulation afforded by the anal-

ogy under divergent conditions. Variables affecting the stability of the system

and thus considered in this study were the liquid damping coefficient c7_ the

thrust F_ and the coupled natural frequencies as governed by the horizontal

spring constant K_.

It is reiterated that in all cases the differential equations of motion of

the system yielded two or more pairs of roots _ and consequently, two or more

coupled natural frequencies f depending on the number of degrees of freedom

included in the analysis. The analysis_ however, did not yield the resultant

equations of motion which depend on the initial conditions of the excitation.

Therefore in checking the theoretical results and thus the applicability of the

analogy_ an attempt was made to compare the theoretical roots, that is_ the

damping and coupled frequencies of the dominant modes with those obtained

experimentally.

Although the degree of applicability of the analogy has been based on the

experimental examination of one mode in some cases, this technique is believed to

be justified since the dominant mode examined appeared to be the only mode that

could lead to an unstable condition and thus a possible failure of a space-flight

system.

Two-Degree-of-Freedom System

The results obtained for the two-degree-of-freedom system involving motion

of the contained liquid and tank translation are shown in figure 5. In this fig-

ure the damping of the modes_ in terms of the logarithmic decrement, are pre-

sented for a range of liquid-damping coefficients c7.

Figure 5(a) presents the results for the system employing the smaller trans-

lational spring having an elastic constant of 106 ib/ft. Theoretical decrements

are shown for both modes_ but experimental data are presented only for the first

mode. In this case_ the fundamental mode consisting primarily of tank translation

completely dominated the oscillation regardless of the initial excitation as a

result of its relatively low damping. The data points presented for the fundamen-

tal mode represent an average of five or more measured values for a given test

condition. The figure shows that the theoretical response is in good agreement

with the experimental results and that the damping of the fundamental mode is

directly proportional to the liquid damping coefficient. The modal damping at

c7 = 0 is due to the structural damping ca. It should be noted that this struc-

tural damping has a more pronounced effect on the first mode where the ratio of

tank translational amplitude to liquid amplitude is higher than that for the sec-

ond mode. Also presented in the figure are the average experimental and theoreti-

cal frequencies. For the fundamental mode, the theoretical frequency (1.09 cps)

is in close agreement with the average experimental value (i.ii cps). For the



range covered in this study, no significant changes in frequency occurred as the
liquid damping coefficient c7 was varied.

Figure 5(b) showsthe damping of the two modesfor the system equipped with
the larger spring having an elastic constant of 340 ib/ft. In this case the dec-
rements of both modeswere of the samerelative magnitude and both could therefore
be examined. Again the logarithmic decrements in question appear to vary directly
with the liquid damping coefficients c7 and are in excellent agreementwith the
experimental values. For this particular case, the structural damping of the
system was found to have a negligible effect. Therefore, the damping of the modes
approaches zero as the damping coefficient c7 approaches zero. The theoretical
frequencies of the modeswere i._3 and 2.24 cps which are in excellent agreement
with the experimental results of i._3 and 2.22 cps.

In examining figures 5(a) and (b), it is interesting to comparethe magni-
tudes of the modal damping. Those modeshaving frequencies nearest that of the
uncoupled liquid natural frequency (1.73 cps) are the most highly damped. This
result appears somewhatcontradictory since this condition has been cited as the
most critical fuel-sloshing situation. For the particular configuration under
examination however, the decay rate dependsupon the relative magnitudes of the
total system energy and the dissipative energy. The dissipative energy is almost
entirely due to the liquid motion - the amplitude range of which remained constant
for all studies. Whenthe system coupled frequency is near that of the liquid
natural frequency, smaller inputs (tank translational amplitudes) are required to
generate the initial liquid amplitude and thus the total system energy level is
relatively low. The high ratio of liquid amplitude to tank displacement, although
a potential source of a sloshing instability, results in a higher ratio of dissi-
pative energy to total system energy and thus a greater decay rate in the case of
a free vibration.

Three-Degree-of-Freedom SystemWithout Thrust

The free vibration characteristics of the three-degree-of-freedom system
involving tank translation_ liquid motion_ and air jet rotation_ are shownin fig-
ure 6. These results are very similar to those obtained for the two-degree-of-
freedom case. The addition of the relatively low mass of the air jet system had
a very small effect on the frequencies of the dominant modes. The jet did
increase the damping of the modesfor a given value of c7 as a result of the
added dampingpresent in the system. The additional moderesulting from the
action of the air jet could not be detected experimentally. According to the
theory, this modehas extremely high damping and was therefore not included in
the figure.

For the range examined, the decrements of the modesagain appear to be
directly proportional to the coefficient of liquid damping c7. The agreement

between the theoretical and experimental results illustrates the excellent simula-

tion of the liquid behavior afforded by the pendulum analogy.
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Three-Degree-of-Freedom System With Thrust

To examine the ability of the pendulum analogy to simulate the dynamic char-

acteristics of the liquid under conditions approaching instability, the self-

excited system (fig. 3(b)) was employed. The characteristics of the dominant

modes were examined throughout a range of thrust levels for two values of the

liquid damping coefficient c7. The results of this phase of the investigation

are shown in figure 7. The logarithmic decrement of the fundamental mode of the

system incorporating the smaller spring is shown as a function of thirst level in

figures 7(a) and 7(b). Figure 7(a) shows the effects of thrust for a high value

of the damping coefficient c7 = 0.0214, while figmre 7(b) presents the results

obtained by using a lower value of the damping coefficient c7 = 0.00729. The

figure indicates the destabilizing effect of the thrust on the decay of the funda-

mental mode, that is, as the thrust level increases the decay rate of the mode

decreases and finally becomes unstable or diverges. For the case of the higher

liquid damping coefficient, a higher thrust level is tolerable before an unstable

condition is encountered. In comparing the theoretical and experimental results,

the theoretical value of damping indicated for a given thrust level appears to be

somewhat higher than that obtained experimentally. In view of the excellent cor-

relation in the free vibration cases however, this discrepancy may be attributed

to changes in the characteristics of the engine apparatus with the addition of

thrust. If, for example, the engine damping coefficient ce increased slightly

with the addition of thrust, the engine would have a proportionally higher desta-

bilizing effect. Very slight variations in the engine damping coefficient were

found theoretically to produce variations in the results of the order of magnitude

shown in figures 7(a) and 7(b).

The results obtained for the system having the larger translational spring

constant are presented in figures 7(c) and 7(d). The damping factors for both of

the modes are shown at various thrust levels for two values of c7. Both modes

have essentially the same damping factor at F = 0 for each case but exhibit a

marked dissimilarity as F is increased above zero. In both figures, 7(c)

and 7(d)_ the theory predicts that the damping of the higher mode, involving pri-

marily tank translation, will not be greatly affected by the thrust level. This

prediction is substantiated by the agreement obtained between the experimental and

the analytical results. The theory further predicts that the lower mode damping

will be inversely proportional to the applied thrust, that is, higher thrust

values will yield lower values of system damping. No experimental results are

presented to document this predicted trend because of a difficulty encountered in

isolating this mode. While subjected to thrust, the system was observed to beat

thus yielding very erratic experimental damping values. The absence of the

beating phenomenon in the higher mode is due to the relatively high translational

amplitude required to attain the initial liquid amplitude. In the lower mode

however, the translational amplitude was sufficiently low to permit the occurrence

of beating between the translational oscillation and the liquid oscillation.

A better understanding of the modal behavior may be gained by considering the

relative phase relationships existing between the moving liquid and the tank

during oscillation in each of the modes. When the system was excited such that

the higher mode was predominant, the liquid motion was out of phase with the tank
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displacement since the frequency of the excitation was above that of liquid reso-

nance. Thus, the liquid exerts a more pronounced stabilizing influence on the

system by opposing the destabilizing force. Conversely, lower mode excitation

resulted in liquid oscillations which were in phase with the tank displacement and

resulted in a destabilizing influence on the system. From these observations, the

dissimilarity of the damping-thrust curves for the two modes is not surprising.

Four-Degree-of-Freedom System

The theoretical damping-thrust relationships for the fundamental mode of the

complete four-degree-of-freedom system, involving tank translation_ tank pitch,

liquid motion, and air jet rotation, are presented in figure 8(a) for three values

of c7. The fundamental mode in this case is predominantly a pitching oscilla-

tion. Again the theory predicts a destabilizing effect with either increasing

thrust or decreasing liquid damping, however no correlation of these results

could be obtained experimentally. Since the theoretical frequency (0.83) was

found to be in good agreement with that obtained experimentally (0.82), the poor

damping-thrust correlation suggested that the damping coefficients assumed for a

given baffle location (ref. 16) might not be applicable for a system undergoing

pitching oscillations.

In an effort to examine more closely the applicability of the assumed damping

coefficients c7 for a pitching system, the results of figure 8(a) were replotted

in figure 8(b) to show the theoretical thrust at neutral stability (6 = 0) as a

function of c7. Consistent with previous observations, the results show a linear

increase in thrust at neutral stability with an increase in c7. In an effort to

check this prediction experimentally, the thrust level at neutral stability was

measured for several different baffle positions. The values of c7 were obtained

from reference 16 for the size and location of the baffle. For convenience, the

applicable results of reference 16 are presented in figure 9 where the damping

coefficient c7 is shown as a function of baffle position d/r for the partic-

ular baffles employed in this investigation. These reference data show a decrease

in c7 as the baffle is further submerged below _ _ 0.06. If these damping
r

coefficients, obtained from the decoy of the liquid amplitude in a static tank,

are applicable for a pitching system, the experimental thrust at neutral stability

will decrease as the baffle is submerged as shown by the theoretical curve in fig-

ure 8(c) since the theory of figure 8(b) predicts a linear variation of this

thrust with c7. However_ this prediction was not borne out experimentally. In

fact, the thrust level for neutral stability was observed to increase in some

cases as the baffle was further submerged. These experimental results are also

shown in figure 8(c) where the thrust for neutral stability is shown as a function
of baffle location.

In comparing theory and experiment, it appears that in a pitching tank, the

damping at a given baffle location differs from that indicated in figure 9. It

must be noted that the data of figure 9 however were obtained from the decay of

the fundamental antisymmetric liquid mode in a static tank. Although these data

have been assumed to be applicable for both translational and pitching tanks, it
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appears that a baffle in a pitching tank is effective throughout a much greater

depth range than the same baffle in a static or translating tank.

The existence of a greater effective range of a baffle in a pitching tank

was later documented by the data presented in figure i0 wherein the decrement of

the fundamental pitchiniz mode is presented as a function of baffle location d/r.

For both the i/2-inch and 3/4-inch ring baffles with clearance, the data show that

the damping factor associated with the fundamental pitching mode reaches a maximum

at _ _ i, and then slowly decreases as the baffle is further submerged. The
r

slight peak noted in the data at _ _ 0.3 is most probably due to a combination
r

of the translatory damping and the pitch damping. At values of _ _ 0.4, the
r

translational damping becomes negligible and the remainder of the curve may be

considered as representing only the liquid pitch damping. The effective depth

range of the same baffles installed in a static tank is restricted to values of

_0.6.
r

The increased effectiveness of the baffle in suppressing pitching oscilla-

tions is understandable after examining the behavior of the liquid with respect

to the tank. When the liquid oscillations are confined to a static tank or to a

tank in pure translation, the liquid at depths greater than one radius is essen-

tially at rest with respect to the tank. Thus a baffle installed in the region

_ 0.6 has a negligible effect on the damping since there is no relative motion
r

between the liquid and the baffle. The situation changes radically when the

motion of the tank is predominantly one of pitching. Small tufts of yarn placed

along the tank wall in the pitch plane revealed that the tank essentially rotates

about the liquid mass or that there is relative motion between the entire liquid

mass and the tank. Consequently a baffle installed in a pitching tank remains

effective at much greater depths than does a baffle in a static or translating

tank. it should be noted that the data of figure i0 serve only as an illustration

of the damping trends <r baffle effectiveness in a pitching tank. The damping

factor shown for the fundamental mode is unique for the particular location of

the pivotal axis.

In view of the limited studies of the pitching characteristics of the system,

the discrepancies noted in the four degree-of-freedom system are easily explained.

The most obvious discrepancy appears to be the effective liquid damping coeffi-

cient associated with the pitching. In particular, the damping associated with a

given baffle in a fixed tamk_ as published in reference 16, while applicable for

a translating tank, is not applicable in the case of a pitching tank. It appears

that for consistent results_ damping terms associated with both the translational

mode and the pitching mode must be included in the analysis. At the present time,

there is no literature relating to the damping provided by a baffle in a pitching

tank. Therefore pending an investigation of the damping of liquids in pitching

tanks with baffles, the applicability of the pendulum analogy in predicting the

modal damping of such a system is questionable.
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Frequency Comparison

The modal frequencies of free vibration for all of the configurations are

summarized in table I. The configurations are classified according to degrees of

freedom and translational spring constant. The theoretical modal frequencies are

presented in the order of their numerical occurrence and are compared with the

measured experimental frequencies. It should be noted that the mode resulting

from the addition of the air jet could not be excited experimentally and therefore

no experimental data are presented.

The correlation between the theory and the experiment indicates the excellent

simulation of the stiffness and inertia of the liquid afforded by the pendulum

analogy. The results further indicate that the addition of a pitching degree of

freedom does not limit the applicability of the analogy for frequency studies.

In considering the cases examined_ it appears that the analogy can be used for

frequency studies in any system that experiences planar oscillations.

CONCLUDING REMARKS

An analytical and experimental investigation has been conducted to determine

the coupled dynamic response of a tank partially filled with liquid and undergoing

free and forced planar oscillations. The results of this investigation are as
follows:

I. For the range of baffle damping considered in this investigation, an

increase in the liquid damping resulted in a marked increase in the damping of

the predominant modes of the system.

2. The more highly damped mode for the system having only coupled tank trans-

lation and liquid motion was that mode having a frequency nearest the uncoupled

natural frequency of the liquid. This mode involved primarily liquid motion, thus

the ratio of dissipative energy to total-system energy was relatively high and

resulted in proportionally higher modal damping.

9- The pendulum analogy affords an excellent simulation of the liquid for the

analytical prediction of the coupled natural frequencies of a liquid-tank combi-

nation undergoing planar oscillations.

4. In cases wherein the tank motion is purely translatory, the pendulum anal-

ogy may be used in predicting the modal damping, and thus the dynamic response of

the system, if the pendulum is damped such that its decrement is equal to the dec-

rement of liquid amplitudes in an identical static tank fitted with the same

baffle configuration.

5. Although useful in predicting the coupled natural frequencies, the pen-

dulum analogy_ incorporating damping values found applicable in the translating

tank, does not yield valid modal damping for the same configuration undergoing

pitching oscillations. This discrepancy is apparently due to a basic difference
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found to exist between the damping of a liquid in a translating tank and of a

liquid in the same tank undergoing pitching oscillations.

6. The difference in damping characteristics of a liquid in a translating

tank and the liquid in the same tank undergoing planar pitching oscillations is

the direct result of a dissimilarity in the relative motion existing between the

liquid and tank in each system. In a translating tank relative motion exists

between the liquid and tank wall primarily in the region of the liquid surface,

while in a pitching tank, relative motion takes place at all points of liquid-

tank contact. Consequentlyj a baffle in a pitching tank has a greater effective

depth range and thus entirely different damping characteristics.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., May 28, 1963.
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APPENDIX

DETERMINATION OF PHYSICAL PARAMETERS OF SYSTEM

The numerical values for the physical parameters involved in the equations

of motion are presented in table II and were obtained as follows: The character-

istics of the pendulum analogy were calculated using the results of reference I0;

and, the remainder of the parameters were either directly or indirectly obtained

from physical measurements.

With respect to the pendulum analogy, the following quantities (see fig. 4)

were calculated: mp - mass of the pendulum, Zp - length of the pendulum,

_h - distance from tank pivotal axis to pendulum pivot, mo - the fixed mass,

Zo - distance from tank pivotal axis to center of gravity of fixed mass, and

Io - mass moment of inertia of fixed mass. It was found (ref. i0) that the anal-

ogous system would exactly duplicate the hydrodynamic forces and moments if:

mp: (Al) (Al)

_p : g/_2 (A2)

_h = hl- (hA2/nl) (AS)

mo: -A1)

lh( 21- r2 )/( 1_O = hl - + 4_ A2 1 - A 1

where the dimensionless parameters AI, A2, A 3

antisymmetric mode of the liquid oscillation as:

are defined for the fundamental

(AS)

(A6)

2 tanh K I
A I =

A2 = 2i__- 2 + KI sinh K I - cosh K I

KI2 (_i 2 - l)cosh K I

(A7)

(AS)

2O



and

where

M

h

r

A3--_ 2 sinhK I-K 1 (Ag)

K13 (_l2 - l)cosh _i

h (Al0)K1 = _i r

first zero of the first derivative of the Bessel function of the first

(that is, Jl'(_ ) = 0 at _ = _i = 1.84]order and first kind

total mass of the liquid

liquid depth

tank radius

hI distance from the tank bottom to the tank pitch axis

The natural frequency of the fundamental antisymmetric mode

=\I g_l tanh _l__h
vr r

The coefficient of damping

is then_

(All)

c7 was obtained from the damping results of

reference 16 where the logarithmic decrement of the fundamental antisymmetric

mode is presented as a function of baffle location d/r, where d is the dis-

tance from the quiescent liquid surface to the baffle. For each of the baffle

locations used in this investigation, the damping coefficient was obtained from

figure 5 of reference 16 by equating the given decrement to

= 2_ c7 1 (Ai2)

CYcr _ll - { c7 _2

V

where is the critical damping coefficient of the pendulum.
CTcr

The remaining numerical coefficients were evaluated as follows: m s - mass

of support platform, m t - mass of tank, and me - mass of engine were measured

directly prior to assembling the system; ks length of support wires, _g dis-

tance from tank pivotal axis to pivotal axis of jet, and Zc - distance from jet

pivotal axis to jet damper were also measured directly; _t - distance from the
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pivotal axis of tank to center of massof the empty tank, and _e - distance from
jet pivotal axis to center of mass of the jet assembly were obtained by balancing
the elements in question on knife-edge supports, to determine the locations of
their respective centers of mass.

The massmomentsof inertia of the tank and engine assembly_ I t and I e
were obtained indirectly by measuring the natural frequency of the individual
elements whenoscillated about their respective pivotal locations. The spring
constants of the cantilever rods Ks employed in this investigation were
obtained from measurementsof the translatory natural frequencies of the empty
tank configuration. The structural damping coefficient associated with the
spring ca and the damping coefficient of the engine assembly ce were obtained
by measuring the logarithmic decrement of the individual systems and equating the
decrements:

= 2_ cy -_

and (A15)

c e
5 e = 2_

Cecrll- (tear) 2

J

The thrust of the air jet F was obtained from a calibration of engine

thrust in pounds as a function of the internal pressure of the jet tank. This

calibration was obtained by mounting the engine on a balance scale and obtaining

the required air pressure for a given thrust level. Finally, the gravitational

constant g was taken as 32.16 ft/sec 2.
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TABLE I.- EXPERIMENTAL-THEORETICAL FREQUENCY COMPARISON

Degrees

of

freedom

Two

Three

Four

Translational

spring constant,

K_, ib/ft

zo6

340

i06

340

540

Experimental

frequency,

cps

i. ii

1.92

1.53

2.22

i. ii

1.91

1.55

2.21

0.82

1.55
2.60

Theoretical

frequency,

cps

i. 09

1.94

1.53
2.24

1.o8
z. 49

1.93

i. 49

i. 55

2.22

0.83
1.38
1.53
2.61
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TABLE II.- NUMERICAL VALUES OF PHYSICAL PARAMETERS

Parameter Symbol Numerical value Method of determination

Length

Mass

Inertia

Spring

constant

Damping
coefficient

_C

le

lg

Ih

lk

Io

lp

Is

It

me

mo

m S

mt

I e

Io

It

K e

Ce

CCL

c F

0.63 ft

•07 ft

1.16 ft

-.23 ft

•20 ft

• 27 ft

4.79 ft

•32 ft

0.062 ib-sec2/ft

1.674 ib-sec2/ft

.340 ib-sec2/ft

•123 ib-sec2/ft

•540 ib-sec2/ft

O. 00122 ib-ft-sec 2

•i17 ib-ft-sec 2

•258 ib-ft-sec 2

106.0 and 340.0 Ib/ft

0.00917 lb- sec/ft

.0848 ib-sec/ft

Variable (ft-lb-sec/radian)

Direct measurement

Direct measurement

Direct measurement

Calculated (ref. i0)

Not used

Calculated (ref. i0)

Calculated (ref. i0)

Direct measurement

Direct measurement

Direct measurement

Calculated (ref. i0)

Calculated (ref. lO)

Direct measurement

Direct measurement

From rotational frequency

Calculated (ref. 10)

From rotational frequency

Not used

From translatory frequency

From measured decrement

From measured decrement

From reference 16

Force F Variable (ib) Calibration of jet

Acceleration g 32.16 ft/sec 2 Sea-level standard
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(b) Tank and mounting assembly.

Figu_re i.- Continued.

L-62-2045

(c) Air Jet assembly.

FJ_re i.- Concluded.

L-62-2046
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Figure 5.- Variation of modal damping with liquid damping coefficient for two degree-of-freedom

system (tank translation, liquid motion).
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Figure 6.- Variation of modal damping with liquid damping coefficient for three degree-of-freedom
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Figure 8.- Four-degree-of-freedom analogous system; K_ = 340.
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